题目内容
观察下列各式:…..请你将发现的规律用含自然数n(n≥1)的等式表示出来___________________.
一件工作,甲单独完成需2.5小时,乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,则完成此任务共需_____小时.
在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.
(1)如图1,DE与BC的数量关系是 ;
(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;
(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.
如图,在⊙O中,点A,B,C均在圆上,∠AOB=80°,则∠ACB等于( )
A. 130° B. 140° C. 145° D. 150°
阅读理【解析】
对于任意正整数a,b,∵()2≥0,∴a﹣2+b≥0,∴a+b≥2,只有当a=b时,等号成立;结论:在a+b≥2(a、b均为正实数)中,只有当a=b时,a+b有最小值2.
根据上述内容,回答下列问题:
(1)若a+b=9,≤ ;
(2)若m>0,当m为何值时,m+有最小值,最小值是多少?
如果,化简=_____.
若成立,则( )
A. a≥0,b≥0 B. a≥0,b≤0 C. ab≥0 D. ab≤0
甲数的比乙数小1,设甲数为,则乙数可表示为.
如图,矩形ABCD中,点E,F分别在边AB与CD上,点G、H在对角线AC上,AG=CH,BE=DF.
(1)求证:四边形EGFH是平行四边形;
(2)若EG=EH,AB=8,BC=4.求AE的长.