题目内容


如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.

(1)求证:∠PNM=2∠CBN;

(2)求线段AP的长.


       (1)由MN∥BC,易得∠CBN=∠MNB,由已知∠PNB=3∠CBN,根据角的和差不难得出结论;

(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,由(1)知∠PNM=2∠CBN=2∠PAN,由AD∥MN,可知∠PAN=∠ANM,所以∠PAN=∠PNA,根据等角对等边得到AP=PN,再用勾股定理列方程求出AP.

解答:    解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,

∴MN∥BC,

∴∠CBN=∠MNB,

∵∠PNB=3∠CBN,

∴∠PNM=2∠CBN;

(2)连接AN,

根据矩形的轴对称性,可知∠PAN=∠CBN,

∵MN∥AD,

∴∠PAN=∠ANM,

由(1)知∠PNM=2∠CBN,

∴∠PAN=∠PNA,

∴AP=PN,

∵AB=CD=4,M,N分别为AB,CD的中点,

∴DN=2,

设AP=x,则PD=6﹣x,

在Rt△PDN中

PD2+DN2=PN2

∴(6﹣x)2+22=x2

解得:x=

所以AP=


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网