题目内容


已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,

(1)证明四边形ABDF是平行四边形;

(2)若AF=DF=5,AD=6,求AC的长.

 


(1)证明:∵BD垂直平分AC,

∴AB=BC,AD=DC,

在△ADB与△CDB中,

∴△ADB≌△CDB(SSS)

∴∠BCD=∠BAD,

∵∠BCD=∠ADF,

∴∠BAD=∠ADF,

∴AB∥FD,

∵BD⊥AC,AF⊥AC,

∴AF∥BD,

∴四边形ABDF是平行四边形,

(2)解:∵四边形ABDF是平行四边形,AF=DF=5,

∴▱ABDF是菱形,

∴AB=BD=5,

∵AD=6,

设BE=x,则DE=5﹣x,

∴AB2﹣BE2=AD2﹣DE2

即52﹣x2=62﹣(5﹣x)2

解得:x=

=

∴AC=2AE=


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网