题目内容
已知⊙O的直径为6,P为直线l上一点,OP=3,那么直线l与⊙O的关系是 .
如图所示的工件的主视图是( )
A. B. C. D.
已知x1,x2是方程x2+6x+3=0的两实数根,则的值为 .
某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费的办法,若某户居民应交水费y(元)与用水量x(吨)的函数关系如图所示.
(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;
(2)若某用户该月应交水费42元,则该月用水多少吨?
如图,在直角坐标系中,点A(0,5),点P(2,3),将△AOP绕点O顺时针方向旋转,使OA边落在x轴上,则点P'的坐标为 .
使式子有意义的x的取值范围是( ).
A.x≤1 B.x≤1且x≠﹣2
C.x≠﹣2 D.x<1且x≠﹣2
如图,路灯(P点)距地面8米,身高1.6米的小明从距离路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点(B点在A点的左边)时,身影的长度是变长了还是变短了?变长或变短了多少米?
如图,,则下列等式错误的是( )
程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.
译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”
如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为 .