题目内容
.如图,在△ABC中,∠BAC=90°,AB=AC,D在AC上,过C作CE⊥BD的延长线于F,交BA的延长线于E.
(1)BD与CE相等吗?请说明理由;
(2)BE与AC+AD相等吗?请说明理由.
![]()
【考点】全等三角形的判定与性质;等腰直角三角形.
【分析】(1)利用已知条件证明△ABD≌△ACE,利用全等三角形的对应边相等得到BD=CE.
(2)由(1)知△ABD≌△ACE,得到AD=AE,由BE=AB+AE,利用线段的等量代换,即可解答.
【解答】解:(1)∵CE⊥BF,
∴∠EFB=90°
∴∠E+∠ABD=90°,
又∵∠BAC=90°,
∴∠EAC=∠BAD=90°
∴∠E+∠ECA=90°,
∴∠ABD=∠ECA,
在△BAD和△ACE中,
,
∴△ABD≌△ACE,
∴BD=CE.
(2)由(1)知△ABD≌△ACE
∴AD=AE,
又∵AB=AC,
∴AB+AE=AC+AD,
即BE=AC+AD.
【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABD≌△ACE.
练习册系列答案
相关题目