题目内容
考点:全等三角形的判定与性质,等腰直角三角形,旋转的性质
专题:
分析:过F作FM⊥BC于M,求出BM=MF,求出∠C=∠FMD,∠CED=∠MDF,证△CED≌△MDF,推出DM=CE,CD=FM=2即可.
解答:解:
过F作FM⊥BC于M,
则∠FMB=∠FMD=90°,
∵∠C=90°,AC=BC,
∴∠B=∠A=45°,
∴∠MFB=∠B=45°,
∴BM=MF,
∵DE⊥DF,
∴∠EDF=∠FMD=∠C=90°,
∴∠CED+∠CDE=90°,∠CDE+∠FDM=90°,
∴∠CED=∠FDM,
在△CED和△MDF中,
,
∴△CED≌△MDF(AAS),
∵CD=2,BD=3,
∴DM=CE,CD=FM=2=BM,
∴CE=DM=3-2=1,
故答案为:1.
过F作FM⊥BC于M,
则∠FMB=∠FMD=90°,
∵∠C=90°,AC=BC,
∴∠B=∠A=45°,
∴∠MFB=∠B=45°,
∴BM=MF,
∵DE⊥DF,
∴∠EDF=∠FMD=∠C=90°,
∴∠CED+∠CDE=90°,∠CDE+∠FDM=90°,
∴∠CED=∠FDM,
在△CED和△MDF中,
|
∴△CED≌△MDF(AAS),
∵CD=2,BD=3,
∴DM=CE,CD=FM=2=BM,
∴CE=DM=3-2=1,
故答案为:1.
点评:本题考查了全等三角形的性质和判定,等腰直角三角形性质的应用,关键是正确作辅助线后求出DM=CE和CD=FM=BM.
练习册系列答案
相关题目
已知点P(a+b,ab),其中a<0,b<0;则点P在( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |