题目内容

张老师在一次“探究性学习”课中,设计了如下数表:

n

2

3

4

5

a

22-1

32-1

42-1

52-1

b

4

6

8

10

c

22+1

32+1

42+1

52+1

(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:
a=_______,b= _______,c=_______;
(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.

 

 

【解析】
(1)由题意有:n2-1,2n,n2+1;
(2)猜想为:以a,b,c为边的三角形是直角三角形.
证明:∵a=n2-1,b=2n;c=n2+1,
∴a2+b2=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2.
而c2=(n2+1)2.

∴根据勾股定理的逆定理可知以a,b,c为边的三角形是直角三角形.

 

【解析】

(1)结合表中的数据,观察a,b,c与n之间的关系,可直接写出答案;(2)分别求出a2+b2,c2,比较即可.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网