题目内容

如图,△ABC中,∠ACB=90°,以它的各边为边向外作三个等边三角形,面积分别为S1、S2、S3,已知S1=20、S3=100,则S2=________.

80
分析:先设AC=a,BC=b,AB=c,根据勾股定理有a2+b2=c2,再根据等式性质可得a2+b2=c2,再根据等边三角形的性质以及特殊三角函数值,易求而S1=×sin60°a•a=a2,同理可求S2=b2,S3=c2,从而可得S1+S2=S3,易求S2
解答:设AC=a,BC=b,AB=c,那么
∵△ABC是直角三角形,
∴a2+b2=c2
a2+b2=c2
又∵S1=a2,S2=b2,S3=c2
∴S1+S2=S3
∴S2=S3-S1
∴S2=100-20=80.
故答案为:80.
点评:本题考查了勾股定理、等边三角形的性质、特殊三角函数值.解题关键是根据等边三角形的性质求出每一个三角形的面积.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网