题目内容
如图,一次函数y=kx+b与反比例函数
的图象交于A(m,6),B(n,3)两点.
(1)求一次函数的解析式;
(2)根据图象直接写出
时x的取值范围.
解:(1)∵点A(m,6)、B(n,3)在函数y=
图象上,
∴m=1,n=2,
∴A点坐标是(1,6),B点坐标是(2,3),
把(1,6)、(2,3)代入一次函数y=kx+b中,得
,
解得
,
∴一次函数的解析式为y=-3x+9;
(2)由图象知:1<x<2.
分析:(1)先把(m,6)、B(n,3)代入反比例函数,可求m、n的值,即可得A、B的坐标,然后把AB两点坐标代入一次函数,可得关于k、b的二元一次方程组,解可得k、b的值,进而可得一次函数的解析式;
(2)根据图象可知当1<x<2时,一次函数y的值大于反比例函数y的值.
点评:本题考查了一次函数与反比例函数交点的问题,解题的关键是先求出m、n的值,并注意待定系数法的使用.
∴m=1,n=2,
∴A点坐标是(1,6),B点坐标是(2,3),
把(1,6)、(2,3)代入一次函数y=kx+b中,得
解得
∴一次函数的解析式为y=-3x+9;
(2)由图象知:1<x<2.
分析:(1)先把(m,6)、B(n,3)代入反比例函数,可求m、n的值,即可得A、B的坐标,然后把AB两点坐标代入一次函数,可得关于k、b的二元一次方程组,解可得k、b的值,进而可得一次函数的解析式;
(2)根据图象可知当1<x<2时,一次函数y的值大于反比例函数y的值.
点评:本题考查了一次函数与反比例函数交点的问题,解题的关键是先求出m、n的值,并注意待定系数法的使用.
练习册系列答案
相关题目
| 2 |
| x |
| A、x>1 |
| B、x<-2或0<x<1 |
| C、-2<x<1 |
| D、-2<x<0或x>1 |