题目内容
直线y=x+1与直线y=2x-3的交点坐标是
- A.(-2,-1)
- B.(4,5)
- C.(-4,-3)
- D.(2,3)
B
分析:求两条直线的交点,可联立两函数的解析式,所得方程组的解即为两个函数的交点坐标.因此本题需联立y=x+1,y=2x-3;通过解方程组,可求出它们的交点坐标.
解答:联立两函数的解析式有:
,
解得
,
则直线y=x+1与直线y=2x-3的交点坐标是(4,5).
故选B.
点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
分析:求两条直线的交点,可联立两函数的解析式,所得方程组的解即为两个函数的交点坐标.因此本题需联立y=x+1,y=2x-3;通过解方程组,可求出它们的交点坐标.
解答:联立两函数的解析式有:
解得
则直线y=x+1与直线y=2x-3的交点坐标是(4,5).
故选B.
点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
练习册系列答案
相关题目