题目内容
已知圆的半径是,则该圆的内接正六边形的面积是( )
A. B. C. D.
如图,已知圆O是△ABC的外接圆,AB是圆O的直径,C是圆上的一点,D是AB延长线上的一点,AE⊥CD交DC的延长线于点E,且AC平分∠EAB.
(1)求证:DE是圆O的切线.
(2)若AB=6,AE=4.8,求BD和BC的长.
如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(),则s()与t(s)的函数关系可用图像表示为( )
如图,在平面直角坐标系中,与轴相切于原点,平行于轴的直线交于、两点,若点的坐标是,则弦M的长为 .
已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).
(2017贵州省遵义市)如图,抛物线(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为.
(1)求该抛物线的函数关系式与C点坐标;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
①探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;
②试求出此旋转过程中,(NA+NB)的最小值.
解不等式组:,并把解集在数轴上表示出来.
随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为( )
A. 0.215×104 B. 2.15×103 C. 2.15×104 D. 21.5×102
甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示.根据图象所提供的信息有:①甲队挖掘30m时,用了3h;②挖掘6h时甲队比乙队多挖了10m;③乙队的挖掘速度总是小于甲队;④开挖后甲、乙两队所挖河渠长度相等时,x=4.其中一定正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个