题目内容
杨老师在课上讲了一个重要的不等式:a>0时a+
≥2后,随手出了一个题目:解方程:(x2008+1)(1+x2+x4+…+x2006)=2008•x2007,你能求解吗?
| 1 |
| a |
易知x>0,方程两边同除以x2007得
(x+
)(1+x2+x4+…+x2006)=2008,
∴x+x3+x5+…+x2007+
+
+…+
=2008,
∴(x+
)+(x3+
)+…+(x2007+
)=2008.
又∵x+
≥2,x3+
≥2,…,x2007+
≥2.
∴(x+
)+(x3+
)+…+(x+
)≥2008.
要使方程成立,必须有x=
,x3=
,…,x2007=
,即x=±1.
但x>0,故x=1,
答:x=1.
(x+
| 1 |
| x2007 |
∴x+x3+x5+…+x2007+
| 1 |
| x2007 |
| 1 |
| x2005 |
| 1 |
| x |
∴(x+
| 1 |
| x |
| 1 |
| x3 |
| 1 |
| x2007 |
又∵x+
| 1 |
| x |
| 1 |
| x3 |
| 1 |
| x2007 |
∴(x+
| 1 |
| x |
| 1 |
| x3 |
| 1 |
| x2007 |
要使方程成立,必须有x=
| 1 |
| x |
| 1 |
| x3 |
| 1 |
| x2007 |
但x>0,故x=1,
答:x=1.
练习册系列答案
相关题目