题目内容
【题目】如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.
![]()
(1)求出抛物线C1的解析式,并写出点G的坐标;
(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:
(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.
【答案】(1)抛物线C1的解析式为y=﹣x2+2x+3,点G的坐标为(1,4);(2)k=1;(3)M1(
,0)、N1(
,﹣1);M2(
,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).
【解析】
(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;
(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,
m),代入所设解析式求解可得;
(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解即可.
(1)∵点A的坐标为(﹣1,0),
∴OA=1,
∴OC=3OA,
∴点C的坐标为(0,3),
将A、C坐标代入y=ax2﹣2ax+c,得:
,
解得:
,
∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,
所以点G的坐标为(1,4);
(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,
过点G′作G′D⊥x轴于点D,设BD′=m,
![]()
∵△A′B′G′为等边三角形,
∴G′D=
B′D=
m,
则点B′的坐标为(m+1,0),点G′的坐标为(1,
m),
将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:
,
解得:
(舍),
,
∴k=1;
(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),
∴PQ=OA=1,
∵∠AOQ、∠PQN均为钝角,
∴△AOQ≌△PQN,
如图2,延长PQ交直线y=﹣1于点H,
![]()
则∠QHN=∠OMQ=90°,
又∵△AOQ≌△PQN,
∴OQ=QN,∠AOQ=∠PQN,
∴∠MOQ=∠HQN,
∴△OQM≌△QNH(AAS),
∴OM=QH,即x=﹣x2+2x+2+1,
解得:x=
(负值舍去),
当x=
时,HN=QM=﹣x2+2x+2=
,点M(
,0),
∴点N坐标为(
+
,﹣1),即(
,﹣1);
或(
﹣
,﹣1),即(1,﹣1);
如图3,
![]()
同理可得△OQM≌△PNH,
∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,
解得:x=﹣1(舍)或x=4,
当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,
∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);
综上点M1(
,0)、N1(
,﹣1);M2(
,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).