题目内容

 

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,

操作示例:

 我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC绕点P逆时针旋转180°拼接到△PFD的位置,构成新的图形(如图2).

思考发现:

判断图2中四边形ABEF的形状:         ;四边形ABEF的面积是          。(用含字母的代数式表示)

实践探究:

类比图2的剪拼方法,请你就图3(已知:AB∥DC)画出剪拼成一个平行四边形的示意图.

联想拓展:

小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.

如图4,在梯形ABCD中,AD∥BC,E是CD的中点, EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积。

如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.

 

解析:思考发现:四边形ABEF为矩形-------1分;四边形ABEF的面积是---2分

实践探究:

联想拓展:

(1)如图4过点E作PE∥AB交BC与P交AD的延长线于Q,

   则有S梯形ABCD=S□ ABPQ= AB ×EF =5×4=20        -------5分

(2)

作图-------7分

取AB的中点F,BC的中点G,作直线FG分别交AE,CD于点P,Q,

则可拼成一平行四边形PQDE               ------8分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网