题目内容
如图,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形ABCD的周长为30cm,则AB的长为
- A.5cm
- B.10cm
- C.15cm
- D.7.5cm
A
分析:本题运用矩形的性质通过周长的计算方法求出矩形的边长.
解答:矩形ABCD中,O是BC的中点,∠AOD=90°,
根据矩形的性质得到△ABO≌△DCO,则OA=OD,∠DAO=45°,
所以∠BOA=∠BAO=45°,即BC=2AB,由矩形ABCD的周长为30cm得到,
30=2AB+2×2AB,
解得AB=5cm.故选A.
点评:本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.
分析:本题运用矩形的性质通过周长的计算方法求出矩形的边长.
解答:矩形ABCD中,O是BC的中点,∠AOD=90°,
根据矩形的性质得到△ABO≌△DCO,则OA=OD,∠DAO=45°,
所以∠BOA=∠BAO=45°,即BC=2AB,由矩形ABCD的周长为30cm得到,
30=2AB+2×2AB,
解得AB=5cm.故选A.
点评:本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.
练习册系列答案
相关题目