题目内容
如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.
从一个边长为2cm的正三角形钢板上裁下一个面积最大的圆,则这个圆的半径是 cm.
如图,在△ABC中,点D为BC边的中点,以点D为顶点的∠EDF的两边分别与边AB,AC交于点E,F,且∠EDF与∠A互补.
(1)如图1,若AB=AC,且∠A=90°,则线段DE与DF有何数量关系?请直接写出结论;
(2)如图2,若AB=AC,那么(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;
(3)如图3,若AB:AC=m:n,探索线段DE与DF的数量关系,并证明你的结论.
为解决群众看病难的问题,一种药品连续两次降价,每盒价格由原来的60元降至48.6元.若平均每次降价的百分率是x,则关于x的方程是 .
已知抛物线y=(m+1)x2+2的顶点是此抛物线的最高点,那么m的取值范围是( )
A.m≠0 B.m≠﹣1 C.m>﹣1 D.m<﹣1
如图,大楼高30m,远处有一塔BC,某人在楼底A处测得塔顶的仰角为60°,爬到楼顶D测得塔顶的仰角为30°.则塔高BC为 m.
若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有 桶.
如图,在山顶上有一座电视塔,在塔顶B处,测得地面上一点A的俯角α=60°,在塔底C处测得的俯角β=45°,已知BC=60m,求山高CD(精确到1m,≈1.732)
如图所示的几何体的左视图为( )
A. B. C. D.