题目内容
如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为( )
A.3 B.4 C.5 D.6
某课题小组研究如下的几个问题.
(1)边长为1的等边三角形从图1位置开始沿直线顺时针无滑动地向右滚动一周,求点P运动的路径长(直接列式计算);
(2)边长为1的正方形从图2位置开始沿直线顺时针无滑动地向右滚动,当正方形滚动一周时,求点P运动的路经长(直接列式计算).
(3)请你将(1)(2)中的正多边形化成一个边长为1,边数大于4的正多边形,按(1)(2)的方式滚动一周,求其任意一个顶点运动的路径长(请写出你选的图形的名称,直接写出结果)
将2.95用四舍五入法精确到十分位,其近似值为 。
如图,图中的小方格都是边长为1的正方形,△ABC的A、B、C三点坐标为A(2,0)、B(2,2)、C(6,3).
(1)请在图中画出一个△A′B′C′,使△A′B′C′与△ABC是以坐标原点为位似中心,相似比为2的位似图形.
(2)求△A′B′C′的面积.
如图,x= .
如图,在△ABC中,∠BAC=90°,AB=6cm,BC=10cm,点D在线段AC上,且CD=2cm,动点P从BA的延长线上距A点10cm的E点出发,以每秒2cm的速度沿射线EA的方向运动了t秒.
(1)求AD的长.
(2)直接写出用含有t的代数式表示PE= .
(3)在运动过程中,是否存在某个时刻,使△ABC与△ADP全等?若存在,请求出t值;若不存在,请说明理由.
先化简,再求值:(a-1)2-a(a+1),其中.
如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为( )
A.7cm B.10cm C.12cm D.22cm
如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”。如图,在三角形ABC中,∠C=90°,较短的一条直角边BC=1,且三角形ABC是“有趣三角形”,求三角形ABC的“有趣中线”的长。