题目内容
如图,x= .
若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为
A.1:2 B.1:4 C.2:1 D.4:1
A、B、C三点在同一条直线上,M、N分别为AB、BC的中点,且AB=60,BC=40,则MN的长为
如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.
(1)求抛物线的解析式.
(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.
计算:
如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为( )
A.3 B.4 C.5 D.6
图①是一面矩形彩旗完全展平时的尺寸图(单位:cm),其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面.
(1)用经加工的圆木杆穿入旗裤作旗杆,求旗杆的最大直径(精确到1cm);
(2)将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220cm,在无风的天气里,彩旗自然下垂,如图②,求彩旗下垂时最低处离地面的最小高度h.
计算:a2•5a= .
如图,在平面直角坐标系xOy中,⊙A与y轴相切于点B(0,),与x轴相交于M,N两点,如果点M的坐标为(,0),求点N的坐标