题目内容
如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=

- A.60°
- B.50°
- C.30°
- D.20°
D
试题分析:根据两直线平行,内错角相等求出∠BCD等于55°;两直线平行,同旁内角互补求出∠ECD等于30°,∠BCE的度数即可求出.
∵AB∥CD,∠ABC=50°,
∴∠BCD=∠ABC=50°,
∵EF∥CD,
∴∠ECD+∠CEF=180°,
∵∠CEF=150°,
∴∠ECD=180°-∠CEF=180°-150°=30°,
∴∠BCE=∠BCD-∠ECD=50°-30°=20°.
考点:此题考查了平行线的性质
点评:解题的关键是注意掌握两直线平行,同旁内角互补,两直线平行,内错角相等.
试题分析:根据两直线平行,内错角相等求出∠BCD等于55°;两直线平行,同旁内角互补求出∠ECD等于30°,∠BCE的度数即可求出.
∵AB∥CD,∠ABC=50°,
∴∠BCD=∠ABC=50°,
∵EF∥CD,
∴∠ECD+∠CEF=180°,
∵∠CEF=150°,
∴∠ECD=180°-∠CEF=180°-150°=30°,
∴∠BCE=∠BCD-∠ECD=50°-30°=20°.
考点:此题考查了平行线的性质
点评:解题的关键是注意掌握两直线平行,同旁内角互补,两直线平行,内错角相等.
练习册系列答案
相关题目