题目内容
(本题满分9分) 如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.
![]()
求证:(1)∠EDC=∠ECD
(2)OC=OD
(3)OE是线段CD的垂直平分线
解:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,
∴ED=EC,即△CDE为等腰三角形,
∴∠EDC=∠ECD;
(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,
∴△OED≌△OEC(AAS),
∴OC=OD;
(3)在△DOF和△COF中,
,
∴△DOF≌△COF,
∴DF=CF,
∵ED=EC,
∴OE是线段CD的垂直平分线.
【解析】
试题分析:(1)根据角平分线性质可证ED=EC,从而可知△CDE为等腰三角形,可证∠ECD=∠EDC;
(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可证△OED≌△OEC,可得OC=OD;
(3)根据SAS证出△DOF≌△COF,得出DF=FC,再根据ED=EC,OC=OD,可证OE是线段CD的垂直平分线.
考点:角平分线的性质;全等三角形的判定与性质.
练习册系列答案
相关题目