题目内容

15.如图,在矩形ABCD中,BC=2BA=8,将矩形ABCD沿AC所在直线翻折使△ABC与△AEC重合,连接BE,BE交AD于点F,则线段EF的长为$\frac{6\sqrt{5}}{5}$.

分析 首先由勾股定理求得AC的长度,然后证明△ABF∽△BCA,求得AF=2,接下来证明△ABC∽△BOC,可求得OE=$\frac{8\sqrt{5}}{5}$,最后△AOF∽△ADC,可求得OF=$\frac{2\sqrt{5}}{5}$,从而可求得EF的长.

解答 解:如图所示:

在Rt△ABC中,AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{{4}^{2}+{8}^{2}}$=4$\sqrt{5}$.
由翻折的性质可知:AC⊥BE,OB=OE,
∴∠OBC+∠BCA=90°
又∵∠ABF+∠FBC=90°,
∴∠ABF=∠ACB.
又∵∠BAF=∠CBA=90°,
∴△ABF∽△BCA.
∴$\frac{AF}{AB}=\frac{AB}{BC}$,即$\frac{AF}{4}=\frac{4}{8}$.
∴AF=2.
∵∠ABF=∠ACB,∠BOC=∠ABC=90°,
∴△ABC∽△BOC.
∴.$\frac{OB}{AB}=\frac{BC}{AC}$,即$\frac{OB}{4}=\frac{8}{4\sqrt{5}}$.
∴OB=$\frac{8\sqrt{5}}{5}$.
∴OE=$\frac{8\sqrt{5}}{5}$.
∵∠OAF=∠DAC,∠AOF=∠ADC=90°,
∴△AOF∽△ADC.
∴$\frac{OF}{AF}=\frac{DC}{AC}$,$\frac{OF}{2}=\frac{4}{4\sqrt{5}}$.
∴OF=$\frac{2\sqrt{5}}{5}$.
EF=OE-OF=$\frac{8\sqrt{5}}{5}-\frac{2\sqrt{5}}{5}$=$\frac{6\sqrt{5}}{5}$.
故答案为:$\frac{6\sqrt{5}}{5}$.

点评 本题主要考查的是相似三角形的性质和判定、翻折变换,证得△ABF∽△BCA、△ABC∽△BOC、△AOF∽△ADC是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网