题目内容
从1,2,3,4中任取两个不同的数,其乘积大于4的概率是 .
如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为 .
(1)已知关于X的方程与方程的解相同,求的值.
(2) 若关于的方程是一元一次方程.求此方程的解.
数轴上一点从原点正方向移动3个单位,再向负方向移动5个单位,此时这点表示的数为 ( )
A.8 B.-2 C.-5 D.2
已知中,AB=AC=BC=3.请在图中用尺规作图画出的内切圆,保留作图痕迹,并求出内切圆的半径。
如图,为测量一颗与地面垂直的树OA高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为( )米
A. B. C. D.
已知,△ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,若E是射线CA上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,连接CG并延长交直线AB于点H.
(1)如图①,若E在边AC上.试说明:①AE=CF; ②CG=GD;
(2)如图②,若E在边CA的延长线上.(1)中的两个结论是否仍成立?(直接写出成立结论的序号,不要说明理由)
(3)若AE=3,CH=5,求边AC的长.
在Rt△ABC中,斜边上的中线长为5cm,则斜边长为 .
杨佳明周日骑车从家里出发,去图书馆看书,
(1)若杨佳明骑车行驶的路程y(km)与时间t(min)的图象如图1所示,请说出线段AB所表示的实际意义: ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时行驶的路程y(km)与时间t(min)的图象;
(2)在整个骑行过程中,若杨佳明离家的距离y(km)与时间t(min)的图象如图2所示,请说出线段AB所表示的实际意义: ;若杨佳明在第30分钟时以来时的速度原路返回,请在图上补出她返回时离家的距离y(km)与时间t(min)的图象;
(3)在整个骑行过程中,若杨佳明骑车的速度y(km/min)与时间t(min)的图象如图3所示,那么当她离家最远时,时间是在第 分钟,并求出她在骑行30分钟时的路程是 .