题目内容
已知f(x)=
,即f(1)=
=
=1-
,f(2)=
=
=
-
,….若f(1)+f(2)+f(3)+…+f(n)=
,则n= .
| 1 |
| x(x+1) |
| 1 |
| 1×(1+1) |
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×(2+1) |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 28 |
| 29 |
考点:规律型:数字的变化类
专题:
分析:由f(1)=
=
=1-
,f(2)=
=
=
-
,…,得出f(1)+f(2)+f(3)+…+f(n)=1-
+
-
+…+
-
=1-
=
=
,进一步得出n的数值即可.
| 1 |
| 1×(1+1) |
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×(2+1) |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
| 28 |
| 29 |
解答:解:∵f(1)=
=
=1-
,f(2)=
=
=
-
,…,
∴f(1)+f(2)+f(3)+…+f(n)=1-
+
-
+…+
-
=1-
=
=
,
∴n=28.
故答案为:28.
| 1 |
| 1×(1+1) |
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×(2+1) |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
∴f(1)+f(2)+f(3)+…+f(n)=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
| 28 |
| 29 |
∴n=28.
故答案为:28.
点评:此题考查数字的变化规律,找出数字之间的联系,得出规律解决问题.
练习册系列答案
相关题目
3点半钟时,钟表的时针与分针的夹角是( )
| A、30° | B、45° |
| C、60° | D、75° |
函数y=-x2-4x+3图象顶点坐标是( )
| A、(2,-7) |
| B、(2,7) |
| C、(-2,-7) |
| D、(-2,7) |
-(x-2y+3z)去括号后的结果为( )
| A、x-2y+3z |
| B、-x+2y-3z |
| C、x+2y-3z |
| D、-x+2y+3z |
下列说法中正确的是( )
| A、最小的正整数是1,最小的负整数是-1 | ||||
| B、单项式a的系数是0,次数是1 | ||||
C、单项式-
| ||||
| D、绝对值等于本身的数只有0 |
如果-
x2n-1y2与3x8y2是同类项,那么代数式(1-n)2003•(n-
)2003的值为( )
| 1 |
| 3 |
| 59 |
| 14 |
| A、0 | B、-1 | C、+1 | D、±1 |