题目内容

设x、y都是有理数,且满足方程(
1
2
+
π
3
)x+(
1
3
+
π
2
)y-4-π=0,求x-y的值.
分析:根据题意,可得,(
x
2
+
y
3
-4)+(
πx
3
+
πy
2
-π)=0,所以
x
2
+
y
3
-4=0
x
3
+
y
2
-1=0
,解出代入即可求解.
解答:解:(
1
2
+
π
3
)x+(
1
3
+
π
2
)y-4-π=0,
化简得,
x
2
+
y
3
+
πx
3
+
πy
2
-4-π=0,
x
2
+
y
3
-4)+(
πx
3
+
πy
2
-π)=0,
所以必有:
x
2
+
y
3
-4=0
x
3
+
y
2
-1=0

解得
x=12
y=-6

所以,x-y=18.
点评:本题考查了实数,读懂题意是正确解答本题的关键,考查了学生的阅读理解能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网