题目内容
下列各组数中,不是同类项的是( )
A.与
B.与
C.与
D.与
(2015山东省德州市,21,10分)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点.∠APC=∠CPB=60°.
(1)判断△ABC的形状: ;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.
如图,O为坐标原点,菱形OABC的顶点A的坐标为,顶点C在轴的负半轴上,函数的图象经过顶点B,则的值为( )
A. B. C. D.
若直线a∥b,a⊥c,则直线b c.
甲、乙、丙、丁四位同学在三次数学测验中,他们成绩的平均分是=85,=85,=85,=85,方差是=3.8,=2.3,=6.2,=5.2,则成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
(本题10分)如图,AB是⊙O的直径,PA,PC分别与⊙O 相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E,记∠EPD=∠1,∠EDO=∠2.
(1)求证:∠1=∠2;
(2)若PC=6,tan∠PDA=,求OE的长。
如图,已知钝角△ABC,∠A=35°,OC为边AB上的中线,将△AOC绕着点O顺时针旋转,点C落在BC边上的点处,点A落在点处, 连结,如果点A、C、在同一直线上,那么∠的度数为 .
(本小题满分8分)我市为治理污水,某地需要铺设一段全长为300 m的污水排放管道.铺设120 m后,为了尽量减少施工对我市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.
现有1角、5角硬币各10枚,从中取出16枚,共计4元,问1角、5角硬币各取多少枚?设1角、5角硬币各取x枚、y枚,可列方程 ( )
A. B.
C. D.