题目内容
小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大,最大面积是多少?
(1)、S=x(30﹣x)(0<x<30);(2)、x=15时,S有最大值为225平方米. 【解析】试题分析:(1)、已知周长为60米,一边长为x,则另一边长为30﹣x.(2)、用配方法化简函数解析式,求出s的最大值. 试题解析:(1)、S=x(30﹣x) 自变量x的取值范围为: 0<x<30. (2)、S=x(30﹣x) =﹣(x﹣15)2+225, ∴当x=15时,S有最大值...
练习册系列答案
相关题目