题目内容
因式分解:(a-1)(a-2)(a-3)(a-4)-24.
考点:因式分解-提公因式法,多项式乘多项式
专题:换元法
分析:先将式子变形为[(a-1)(a-4)][(a-2)(a-3)]-24,得到[(a2-5a+4)][(a2-5a+6)]-24,再把(a2-5a)看作一个整体,将式子展开得到(a2-5a)2+10(a2-5a),再提取公因式(a2-5a)求解即可.
解答:解:(a-1)(a-2)(a-3)(a-4)-24
=[(a-1)(a-4)][(a-2)(a-3)]-24
=[(a2-5a+4)][(a2-5a+6)]-24
=(a2-5a)2+10(a2-5a)+24-24
=(a2-5a)(a2-5a+10)
=a(a-5)(a2-5a+10).
=[(a-1)(a-4)][(a-2)(a-3)]-24
=[(a2-5a+4)][(a2-5a+6)]-24
=(a2-5a)2+10(a2-5a)+24-24
=(a2-5a)(a2-5a+10)
=a(a-5)(a2-5a+10).
点评:考查了因式分解-提公因式法,多项式乘多项式,注意整体思想的应用.
练习册系列答案
相关题目
A、20(
| ||
B、30
| ||
C、15(
| ||
D、30(
|