ÌâÄ¿ÄÚÈÝ
¶þ´Îº¯Êýy=ax2+bx+c£¨a¡¢b¡¢cΪ³£ÊýÇÒa¡Ù0£©ÖеÄxÓëyµÄ²¿·Ö¶ÔÓ¦ÖµÈçÏÂ±í£º
¸ø³öÁ˽áÂÛ£º
£¨1£©¶þ´Îº¯Êýy=ax2+bx+cÓÐ×îСֵ£¬×îСֵΪ-4£»
£¨2£©Èôy£¼0£¬ÔòxµÄȡֵ·¶Î§Îª0£¼x£¼2£»
£¨3£©¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬ÇÒËüÃÇ·Ö±ðÔÚyÖáÁ½²à£®
ÔòÆäÖÐÕýÈ·½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©
| x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
| y | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 |
£¨1£©¶þ´Îº¯Êýy=ax2+bx+cÓÐ×îСֵ£¬×îСֵΪ-4£»
£¨2£©Èôy£¼0£¬ÔòxµÄȡֵ·¶Î§Îª0£¼x£¼2£»
£¨3£©¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬ÇÒËüÃÇ·Ö±ðÔÚyÖáÁ½²à£®
ÔòÆäÖÐÕýÈ·½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©
| A¡¢0 | B¡¢1 | C¡¢2 | D¡¢3 |
¿¼µã£º¶þ´Îº¯ÊýµÄ×îÖµ,¶þ´Îº¯ÊýµÄÐÔÖÊ,Å×ÎïÏßÓëxÖáµÄ½»µã
רÌ⣺
·ÖÎö£º¸ù¾Ý±í¸ñÊý¾Ý£¬ÀûÓöþ´Îº¯ÊýµÄ¶Ô³ÆÐÔºÍÅ×ÎïÏßÓëxÖáµÄ½»µãµÄ×Ý×ø±êΪ0¶Ô¸÷СÌâ·ÖÎöÅжϼ´¿ÉµÃ½â£®
½â´ð£º½â£º£¨1£©Óɱí¿ÉÖª£¬x=1ʱ£¬¶þ´Îº¯Êýy=ax2+bx+cÓÐ×îСֵ£¬×îСֵΪ-4£¬¹Ê±¾Ð¡ÌâÕýÈ·£»
£¨2£©Èôy£¼0£¬ÔòxµÄȡֵ·¶Î§Îª-1£¼x£¼3£¬¹Ê±¾Ð¡Ìâ´íÎó£»
£¨3£©¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬·Ö±ðΪ£¨-1£¬0£©£¬£¨3£¬0£©£¬ËüÃÇ·Ö±ðÔÚyÖáÁ½²àÕýÈ·£¬¹Ê±¾Ð¡ÌâÕýÈ·£»
×ÛÉÏËùÊö£¬ÕýÈ·½áÂ۵ĸöÊýÊÇ2£®
¹ÊÑ¡C£®
£¨2£©Èôy£¼0£¬ÔòxµÄȡֵ·¶Î§Îª-1£¼x£¼3£¬¹Ê±¾Ð¡Ìâ´íÎó£»
£¨3£©¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏóÓëxÖáÓÐÁ½¸ö½»µã£¬·Ö±ðΪ£¨-1£¬0£©£¬£¨3£¬0£©£¬ËüÃÇ·Ö±ðÔÚyÖáÁ½²àÕýÈ·£¬¹Ê±¾Ð¡ÌâÕýÈ·£»
×ÛÉÏËùÊö£¬ÕýÈ·½áÂ۵ĸöÊýÊÇ2£®
¹ÊÑ¡C£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×îÖµ£¬¶þ´Îº¯ÊýµÄÐÔÖÊ£¬Å×ÎïÏßÓëxÖáµÄ½»µãÎÊÌ⣬´Óͼ±íÊý¾Ý׼ȷ»ñÈ¡ÐÅÏ¢ÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
°Ñ¶àÏîʽa(x-y
-b(y-x
+(y-x
Òòʽ·Ö½â£¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| ) | 3 |
| ) | 3 |
| ) | 3 |
A¡¢Ôʽ=(x-y
| ||
B¡¢Ôʽ=(x-y
| ||
C¡¢Ôʽ=(x-y
| ||
D¡¢Ôʽ=(x-y
|
8ºÍ24µÄ×î´ó¹«ÒòÊýÊÇ£¨¡¡¡¡£©
| A¡¢4 | B¡¢8 | C¡¢16 | D¡¢24 |
ijÉÌÆ·ÔÊÛ¼Û250Ôª£¬¾¹ýÁ¬ÐøÁ½´Î½µ¼ÛºóÊÛ¼ÛΪ200Ôª£®ÉèÆ½¾ùÿ´Î½µ¼ÛµÄ°Ù·ÖÂÊΪx£¬ÔòÏÂÃæËùÁз½³ÌÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢200£¨1+x£©2=250 |
| B¡¢250£¨1-x£©2=200 |
| C¡¢250£¨1+x£©2=200 |
| D¡¢200£¨1-x£©2=250£® |
| A¡¢-2a | B¡¢2b |
| C¡¢2a | D¡¢-2b |
| A¡¢¡Ï1=¡Ï2 |
| B¡¢¡Ï2=¡Ï3 |
| C¡¢¡Ï1=¡Ï3 |
| D¡¢ÒÔÉ϶¼²»¶Ô |
Èô-1£¼a£¼0£¬ÄÇô´úÊýʽa£¨1-a£©£¨1+a£©µÄÖµÒ»¶¨ÊÇ£¨¡¡¡¡£©
| A¡¢¸ºÊý | B¡¢ÕýÊý |
| C¡¢·Ç¸ºÊý | D¡¢Õý¡¢¸ºÊý²»ÄÜÈ·¶¨ |