题目内容

如图,△ABC中,D是AC边的二等分点,E是BC边的四等分点,F是BD边的二等分点,若S△ABC=16,则S△DEF=________.

3
分析:根据三角形的面积公式:S=×底×高,找到等高不同底的三角形,然后根据已知条件“D是AC边的二等分点,E是BC边的四等分点,F是BD边的二等分点”求得这些三角形底边边长之间的数量关系,从而求得三角形DEF的面积.
解答:∵D是AC边的二等分点,S△ABC=16,
∴AD=DC,
∴S△ABD=S△CBD=S△ABC=8;
又∵E是BC边的四等分点,
∴S△BDE=S△BCD=6;
而F是BD边的二等分点,
∴S△DEF=S△BDE=3.
故答案是:3.
点评:本题考查了三角形的面积.解答该题时,要熟记三角形的面积公式S=×底×高.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网