题目内容
如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.
(1)若四边形ABCD是菱形,则它的中点四边形EFGH一定是 ;
A.菱形 B.矩形 C.正方形 D.梯形
(2)若四边形ABCD的面积为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是S1= S2
(3)在四边形ABCD中,沿中点四边形EFGH的其中三边剪开,可得三个小三角形,将这三个小三角形与原图中未剪开的小三角形拼接成一个平行四边形,请在答题卡的图形上画出一种拼接示意图,并写出对应全等的三角形.
![]()
解:(1)如图1,连接AC、BD.
∵E、F、G、H分别是菱形ABCD各边的中点,
∴EH∥BD∥FG,EF∥AC∥HG,EH=FG=
BD,EF=HG=
AC,
∴四边形EFGH为平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴EF⊥FG,
∴▱EFGH是矩形;
故选:B.
(2)如图2,设AC与EH、FG分别交于点N、P,BD与EF、HG分别交于点K、Q,
∵E是AB的中点,EF∥AC,EH∥BD,
∴△EBK∽△ABM,△AEN∽△EBK,
∴
=
,S△AEN=S△EBK,
∴
=
,同理可得
=
,
=
,
=
,
∴
=
,
∴四边形ABCD的面积为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是S1=2S2;
(3)如图3,四边形NEHM是平行四边形;
△MAH≌△GDH,△NAE≌△FBE,△CFG≌△ANM.
![]()
![]()
练习册系列答案
相关题目
某几何体的三视图如图所示,这个几何体是( )
![]()
|
| A. | 圆柱 | B. | 三棱柱 | C. | 长方体 | D. | 圆锥 |
下列四个图形中,既是轴对称图形又是中心对称图形的是( )
|
| A. |
| B. |
| C. |
| D. |
|