题目内容

Rt△ABC中,∠C=90°,若直角边AC=5,BC=12,则此三角形的内切圆半径为________.

2
分析:设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.
解答:解:如图;
在Rt△ABC,∠C=90°,AC=5,BC=12;
根据勾股定理AB==13;
四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;
∴四边形OECF是正方形;
由切线长定理,得:AD=AE,BD=BF,CE=CF;
∴CE=CF=(AC+BC-AB);
即:r=(5+12-13)=2.
故答案为:2.
点评:此题主要考查了直角三角形内切圆的性质及半径的求法.根据已知得出CE=CF=(AC+BC-AB)是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网