题目内容


为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.

(1)y与x的函数关系式为:__________

(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.


【考点】一次函数的应用.

【分析】(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;

(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围,再根据(1)得出的y与x之间的函数关系式,利用一次函数的增减性结合自变量的取值即可得出更合算的方案.

【解答】解:(1)y=90(21﹣x)+70x=﹣20x+1890,

故答案为:y=﹣20x+1890.

(2)∵购买B种树苗的数量少于A种树苗的数量,

∴x<21﹣x,

解得:x<10.5,

又∵x≥1,

∴x的取值范围为:1≤x≤10,且x为整数,

∵y=﹣20x+1890,k=﹣20<0,

∴y随x的增大而减小,

∴当x=10时,y有最小值,最小值为:﹣20×10+1890=1690,

∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1690元.

【点评】题考查的是一元一次不等式及一次函数的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网