题目内容
如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=
(k≠0)的图象交于二、四象限的A、B两点,与x轴交于C点.已知A(-2,m),B(n,-2),tan∠BOC=
,则此一次函数的解析式为______.

| k |
| x |
| 2 |
| 5 |
过点B作BD⊥x轴,
在Rt△BOD中,∵tan∠BOC=
=
=
,
∴OD=5,
则点B的坐标为(5,-2),
把点B的坐标为(5,-2)代入反比例函数y=
(k≠0)中,
则-2=
,即k=-10,
∴反比例函数的解析式为y=-
,
把A(-2,m)代入y=-
中,m=5,
∴A的坐标为(-2,5),
把A(-2,5)和B(5,-2)代入一次函数y=ax+b(a≠0)中,
得:
,解得
,
则一次函数的解析式为y=-x+3.
故答案为:y=-x+3.

在Rt△BOD中,∵tan∠BOC=
| BD |
| OD |
| 2 |
| OD |
| 2 |
| 5 |
∴OD=5,
则点B的坐标为(5,-2),
把点B的坐标为(5,-2)代入反比例函数y=
| k |
| x |
则-2=
| k |
| 5 |
∴反比例函数的解析式为y=-
| 10 |
| x |
把A(-2,m)代入y=-
| 10 |
| x |
∴A的坐标为(-2,5),
把A(-2,5)和B(5,-2)代入一次函数y=ax+b(a≠0)中,
得:
|
|
则一次函数的解析式为y=-x+3.
故答案为:y=-x+3.
练习册系列答案
相关题目