题目内容

如图1,在∠A内部有一点P,连接BP、CP,请回答下列问题:
①求证:∠P=∠1+∠A+∠2;
②如图2,利用上面的结论,你能求出五角星五个“角”的和吗?
③如图3,如果在∠BAC间有两个向上突起的角,请你根据前面的结论猜想∠1、∠2、∠3、∠4、∠5、∠A之间有什么等量关系,并说明理由.

精英家教网
①连接AP并延长,则∠3=∠1+∠BAP,∠4=∠2+∠PAC,
故∠P=∠1+∠A+∠2;

②∵∠1是△DBF的外角,∴∠1=∠B+∠D,
同理∠2是△ECG的外角,∴∠2=∠C+∠E,
∵∠1、∠2、∠A是△AFG的内角,
∴∠1+∠2+∠A=180°,
∴∠A+∠B+∠C+∠D+∠E=180°.

③连接AP、AD、AG并延长,
同①由三角形内角与外角的性质可求出∠4+∠5=∠1+∠2+∠3+∠A.
精英家教网
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网