题目内容

如图,已知抛物线轴交于点,且经过两点,点是抛物线顶点,是对称轴与直线的交点,关于点对称.

(1)求抛物线的解析式;

(2)求证:

(3)在抛物线的对称轴上是否存在点,使相似.若有,请求出所有符合条件的点的坐标;若没有,请说明理由.

 


答案:解:(1)将点代入

     ……………………1分

解之得

所以抛物线的解析式为 ………2分

(2)由(1)可得抛物线顶点  …… 3分

     直线的解析式为

     由是对称轴与直线的交点,则

     由关于点对称 ,则………4分

证法一:

从点分别向对称轴作垂线,交对称轴于

所以

所以      …………………………………5分

证法二:直线的解析式为

关于对称轴的对称点是

将点代入可知点在直线

所以 

(3)在中,三内角不等,且为钝角

① 若点在点下方时,

中,为钝角

因为

所以不相等

所以,点在点下方时,两三角形不能相似 …………………… 6分

②  若点在点上方时,

,要使相似

只需(点之间)或(点的延长线上)

解得点的坐标为   ………………………………………8分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网