题目内容
【题目】如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为( )
![]()
A.
B.![]()
C.
D.![]()
【答案】A
【解析】
过点H作HE⊥BC,垂足为E,易得△BHQ为等腰直角三角形,进而得到HE=
BQ=
,再利用三角形面积公式表示出△BPH的面积,建立S与x之间的函数关系式,即可判断图像.
解:过点H作HE⊥BC,垂足为E,如图,
![]()
∵BD是正方形的对角线
∴∠DBC=45°
∵QH⊥BD
∴△BHQ是等腰直角三角形
又∵HE⊥BQ
∴E为BQ边上的中点,即HE为斜边BQ上的中线
∴HE=
BQ=![]()
∴△BPH的面积S=
BPHE=![]()
=![]()
∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;
因此,选项中只有A选项符合条件.
故选:A.
【题目】定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.
A | B | C | |
笔试 | 85 | 95 | 90 |
口试 |
| 80 | 85 |
(1)请将表和图中的空缺部分补充完整;
(2)图中B同学对应的扇形圆心角为 度;
(3)竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为 ,B同学得票数为 ,C同学得票数为 ;
(4)若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选.(从A、B、C、选择一个填空)
![]()
【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有
本,最多的有
本,并根据调查结果绘制了不完整的图表,如下所示:
本数(本) | 频数(人数) | 频率 |
|
|
|
|
|
|
|
|
|
|
|
|
合计 |
|
|
![]()
(
)统计图表中的
__________,
__________,
__________.
(
)请将频数分布直方图补充完整.
(
)求所有被调查学生课外阅读的平均本数.
(
)若该校八年级共有
名学生,请你估计该校八年级学生课外阅读
本及以上的人数.