题目内容

已知p,q是质数,若5p+7q=29.则pq+qp-q=
 
考点:质数与合数
专题:
分析:根据质数与合数的关系及5p+7q=29可以得出p、q中必有一个质数为2,再由5p+7q=29根据整除的性质就可以求出p、q的值就可以求出结论.
解答:解:∵p,q是质数,
∴5p,7q必有一个为奇数或两个都为奇数.
∵5p+7q=29为奇数,
∴5p、7q必为一奇一偶.
∴p、q中必有一个为2,
当p=2时,
q=
19
7
(舍去).
当q=2时,p=3是质数,
∴p=3,q=2,
∴原式=32+23-2
=9+8-2
=15.
故答案为:15
点评:本题考查了质数与合数的关系的运用,奇数、偶数的性质的运用,解答时合理利用质数中唯一的偶数2是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网