题目内容
如图,已知点A,E,F,C在同一直线上,AE=FC,过点A,C 作AD∥BC,且AD=CB.
求证:DF∥BE.
如图所示,在正方形ABCD中,AB=12,点E在CD 边上,且CD=3DE,将△ADE沿着AE 对折至△AFE, 延长EF交边BC与点G, 连接AG, CF.有下列结论:①△ABG≌△AFG ②BG=GC ③AG//CF ④S△FGC=12正确的是_____________(填序号)
今年秋季,我县县城部分学校将准备搬迁新校舍,在迁入新校舍之前,某学校的同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格,条形图和扇形统计图,请你根据图表信息完成下列各题:
(1)此次共调查了多少位学生?
(2)请将表格填充完整;
(3)请将条形统计图补充完整.
(4)如果该校共有1000名学生,请你计算该校步行和骑自行车的一共有多少人?
如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是( )
A. 20° B. 30° C. 70° D. 80°
综合与实践:
发现问题:
如图①,已知:△OAB中,OB=3,将△OAB绕点O逆时针旋转90°得△OA′B,连接BB′.
则BB′= .
问题探究:
如图②,已知△ABC是边长为4的等边三角形,以BC为边向外作等边△BCD,P为△ABC内一点,将线段CP绕点C逆时针旋转60°,P的对应点为Q.
(1)求证:△DCQ≌△BCP
(2)求PA+PB+PC的最小值.
实际应用:
如图③,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点A、D为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含B、C两点)开一个货物入口M,并修建三条专用车道PA、PD、PM.若修建每米专用车道的费用为10000元,当M,P建在何处时,修建专用车道的费用最少?最少费用为多少?
如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为 (2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是 .
一元二次方程2x2﹣3x+1=0的根的情况是( )
A. 有两个相等的实数根 B. 有两个不相等的实数根
C. 只有一个实数根 D. 没有实数根
如图,在菱形ABCD中,点P是对角线BD上一点,PE⊥AB于点E,PE=3,则点P到BC的距离等于________.
如图,四边形ABCD中,AC平分∠DAB,∠ACB=90°,E为AB的中点,连接CE、DE.AC与DE相交于点F.
(1)求证:△ADF∽△CEF;
(2) 若AD=4,AB=6,求的值.