题目内容

17.如图,AB是⊙O直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,切线GD与AB延长线交于点E.
(1)求证:EF=ED;
(2)若AG=3$\sqrt{3}$,⊙O的半径为3,求OF的值.

分析 (1)连接OD,根据切线的性质得OD⊥DE,则∠EDF+∠ODC=90°,而∠C=∠ODC,则∠EDF+∠C=90°,由OC⊥AB,可得∠C+∠OFC=90°,由对顶角性质,等量代换得出∠DFE=∠EDF,得出结论;
(2)先求得EF=ED,设DE=x,则EF=x,根据切线的性质由AG为⊙O的切线得∠ODE=90°,再证明Rt△EOD∽Rt△EGA,利用相似比求得AE,OE,然后根据AE-OE=OA=3,求得x的值,进而求得OF.

解答 (1)证明:连接OD.
∵DE为⊙O的切线,
∴OD⊥DE,
∴∠ODE=90°,即∠EDF+∠ODC=90°,
∵OC=OD,
∴∠C=∠ODC,
∴∠C+∠EDF=90°,
∵OC⊥AB,
∴∠C+∠OFC=90°,
∵∠OFC=∠DFE,
∴∠C+∠DFE=90°,
∴∠DFE=∠EDF,
∴EF=ED;

(2)解:∵AG,AD为⊙O的切线,
∴DG=AG=3$\sqrt{3}$,
又∵EF=ED,
设DE=x,则EF=x,
∵∠ODE=∠GAE,∠OED=∠GEA,
∴Rt△EOD∽Rt△EGA,
∴$\frac{OD}{AG}$=$\frac{DE}{AE}$=$\frac{OE}{GE}$,即$\frac{3}{3\sqrt{3}}$=$\frac{x}{AE}$=$\frac{OE}{3\sqrt{3}+x}$,
∴AE=$\sqrt{3}$x,OE=3$+\frac{\sqrt{3}}{3}$x,
∵AE-OE=OA=3,
∴$\sqrt{3}$x-(3+$\frac{\sqrt{3}}{3}$x)=3,解得x=3$\sqrt{3}$,
∴AE=$\sqrt{3}$x=9,
∴OF=AE-EF-OA=9-3$\sqrt{3}$-3=6-3$\sqrt{3}$.

点评 本题主要考查了切线的性质和相似三角形的性质,作出适当的辅助线,利用方程思想是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网