题目内容
利用配方法把二次函数y=-x2+4x+1化成y=a(x-h)2+k的形式.
分析:先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
解答:解:y=-x2+4x+1
=-(x2-4x+4)+1+4
=-(x-2)2+5.
所以把二次函数y=-x2+4x+1化成y=a(x-h)2+k的形式为:y=-(x-2)2+5.
=-(x2-4x+4)+1+4
=-(x-2)2+5.
所以把二次函数y=-x2+4x+1化成y=a(x-h)2+k的形式为:y=-(x-2)2+5.
点评:本题考查了二次函数的三种形式.二次函数的解析式有三种形式:
(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);
(2)顶点式:y=a(x-h)2+k;
(3)交点式(与x轴):y=a(x-x1)(x-x2).
(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);
(2)顶点式:y=a(x-h)2+k;
(3)交点式(与x轴):y=a(x-x1)(x-x2).
练习册系列答案
相关题目
小明在复习数学知识时,针对“求一元二次方程的解”,整理了以下的几种方法,请你按有关内容补充完整:
| 复习日记卡片 |
| 内容:一元二次方程解法归纳 时间:2007年6月×日 |
| 举例:求一元二次方程x2-x-1=0的两个解 |
| 方法一:选择合适的一种方法(公式法、配方法、分解因式法)求解 解方程:x2-x-1=0. 解: |
方法二:利用二次函数图象与坐标轴的交点求解如图所示,把方程x2-x-1=0的解看成是二次函数y= |
方法三:利用两个函数图象的交点求解 (1)把方程x2-x-1=0的解看成是一个二次函数y= (2)画出这两个函数的图象,用x1,x2在x轴上标出方程的解. |