题目内容
如图,A类、B类卡片为正方形,C类卡片为长方形,现有A类卡片4张,B类卡片1张, 张,C类卡片4张,则这9张卡片能拼成的正方形的边长是( )
A. B. C. D.
如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)求证:AB∥CD;
(2)如图2,∠AEF与∠EFC的角平分线相交于点P,直线EP与直线CD交于点G,过点G做EG的垂线,交直线MN于点H.求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点,且∠PHK=∠HPK,作∠EPK的平分线交直线MN于点Q.问∠HPQ的大小是否发生变化?若不变,请求出∠HPQ的度数;若变化,请说明理由.
若点P在x轴的下方, y轴的左方, 到每条坐标轴的距离都是3,则点P的坐标为( )
A. (3,3) B. (-3,3) C. (-3,-3) D. (3,-3)
当_______ 时,等式成立。
如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是( )
A. 3cm B. 4cm C. 5cm D. 6cm
如图锐角△ABC,若∠ABC=40°,∠ACB=70°,点D、E在边AB、AC上,CD与BE交于点H.
(1)若BE⊥AC,CD⊥AB,求∠BHC的度数.
(2)若BE、CD平分∠ABC和∠ACB,求∠BHC的度数.
如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF= .
一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )
A.7 B.7或8 C.8或9 D.7或8或9
若函数的图象与坐标轴有三个交点,则的取值范围是( )