题目内容
若自然是x<y<z,a为整数,且
+
+
=a,试求x,y,z.
| 1 |
| x |
| 1 |
| y |
| 1 |
| z |
分析由题设可知x≥1,y≥2,z≥3,所以
0≤a=
+
+
=1
又因a是整数,故a=1.若x=1,则1+
+
=1,
+
=0,与题意不符,所以x≠1.
又x≥3时,a=
+
+
≤
+
+
=
<1,也不成立,故x只能为2.
当x=2,
+
=1-
=
.
令y=3,则z=6.
当x=2,y≥4时,
+
=1-
=
当x=2,y=4时,
+
=
+
=
<
,不成立.
故本题只有一组解,即x=2,y=3,z=6.
答:x=2,y=3,z=6.
0≤a=
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 5 |
| 6 |
又因a是整数,故a=1.若x=1,则1+
| 1 |
| y |
| 1 |
| z |
| 1 |
| y |
| 1 |
| z |
又x≥3时,a=
| 1 |
| x |
| 1 |
| y |
| 1 |
| z |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 5 |
| 47 |
| 60 |
当x=2,
| 1 |
| y |
| 1 |
| z |
| 1 |
| 2 |
| 1 |
| 2 |
令y=3,则z=6.
当x=2,y≥4时,
| 1 |
| y |
| 1 |
| z |
| 1 |
| 2 |
| 1 |
| 2 |
当x=2,y=4时,
| 1 |
| y |
| 1 |
| z |
| 1 |
| 4 |
| 1 |
| 5 |
| 9 |
| 20 |
| 1 |
| 2 |
故本题只有一组解,即x=2,y=3,z=6.
答:x=2,y=3,z=6.
练习册系列答案
相关题目