题目内容
在函数中,自变量的取值范围是 ;
,
某同学在研究四边形的相关性质时发现,在不改变面积的条件下,一般梯形很难转化为菱形,但有些特殊的梯形通过分割可以转化为菱形.例如以下的等腰梯形就可以转化为菱形(如图1),已知在等腰梯形ABCD中,AD∥BC,AD=10,CD=20,∠C=60°.
(1)求梯形ABCD的面积;
(2)如果将该梯形分割成几块,然后可以重新拼成菱形,试画出变化后的图形(在图1中画出,图形的对应部分标明相同的编号);
(3)在完成上述任务后,他又试着将梯形的形状变为直角梯形(如图2),其它条件不变,将梯形分成几块.
①他能拼成一个菱形吗?如果能,请在图2中画出相应的图形;
②他能拼成一个正六边形吗?如果能,请在图3中画出相应的图形.
在函数中,自变量x的取值范围是 .
在下列实数中,无理数是
A.2 B.3.14 C. D.
如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则的值为
A. B.
C. D.
如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为 1~7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是 .
解方程:
若关于x的不等式组无解,则a的取值范围为( )
A.a<4 B.a=4 C. a≤4 D.a≥4
⑴数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(写出已知、求作,作图不写作法,但要求保留作图痕迹.)