题目内容
【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.试判断四边形AFBE的形状,并说明理由.
![]()
【答案】四边形AFBE是菱形,理由见解析.
【解析】
由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF,由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.
解:四边形AFBE是菱形,理由如下:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEG=∠BFG,
∵EF垂直平分AB,
∴AG=BG,
在△AGE和△BGF中,
,
∴△AGE≌△BGF(AAS);∴AE=BF,
∵AD∥BC,
∴四边形AFBE是平行四边形,
又∵EF⊥AB,
∴四边形AFBE是菱形.
故答案为:四边形AFBE是菱形,理由见解析.
练习册系列答案
相关题目