题目内容
如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=9,则该梯形的面积是
- A.30
- B.15
- C.7.5
- D.54
D
分析:S梯形ABCD=S△ABD+S△CBD=
BD×AO+
BD×CO,推出S=
AC×BD,代入求出即可.
解答:∵AC⊥BD,
∴梯形ABCD的面积S=S△ABD+S△CBD
=
BD×AO+
BD×CO
=
BD(AO+CO)
=
BD×AC
=
×12×9
=54.
故选D.
点评:本题考查了梯形的面积和三角形的面积,关键是推出S梯形ABCD=
×BD×AC.
分析:S梯形ABCD=S△ABD+S△CBD=
解答:∵AC⊥BD,
∴梯形ABCD的面积S=S△ABD+S△CBD
=
=
=
=
=54.
故选D.
点评:本题考查了梯形的面积和三角形的面积,关键是推出S梯形ABCD=
练习册系列答案
相关题目
| A、3cm | B、7cm | C、3cm或7cm | D、2cm |