题目内容


两条平行直线被第三条直线所截,则:                                                    

①一对同位角的角平分线互相平行;                                                       

②一对内错角的角平分线互相平行;                                                       

③一对同旁内角的角平分线互相平行;                                                    

④一对同旁内角的角平分线互相垂直.                                                    

其中正确的结论是      .(注:请把你认为所有正确的结论的序号都填上)   


 ①②④ .                                                

【考点】平行线的判定.                                                                         

【分析】根据平行线的性质,结合图形分析平分角之后得到的角之间的位置关系,运用平行线的判定判断是否平行;若不平行,则进一步探究其特殊性.                                                              

【解答】解:①两直线平行,同位角相等,其角平分线分得的角也相等.根据同位角相等,两直线平行可判断角平分线平行;                                                                                                   

②两直线平行,内错角相等,其角平分线分得的角也相等.根据内错角相等,两直线平行可判断角平分线平行;                                              

③显然不对;                                                                                     

④两直线平行,同旁内角互补,其角平分线分得的不同的两角互余,从而推出两条角平分线相交成90°角,即互相垂直.                                                                                                          

故正确的结论是①②④.                                                                         

【点评】本题考查的是平行线的性质和判定.                                         


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网