题目内容

如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④数学公式=1.其中正确的是


  1. A.
    ①②③
  2. B.
    ①②④
  3. C.
    ①③④
  4. D.
    ①②③④
D
分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;
②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;
③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;
④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=CM=AC=BC,从而得出CN=BN.然后即可得出结论.
解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°-30°)=75°,
∵CE⊥CD,∴∠DCE=90°,
∴∠ECA=165°∴①正确;
②∵CE⊥CD,∠ECA=165°(已证),
∴∠BAE=∠ECA-∠ACB=165-90=75°,
∴△ACD≌△BCE(SAS),
∴BE=BC,∴②正确;
③∵∠ACB=90°,∠CAD=30°,AC=BC,
∴∠CAB=∠ACB=45°
∴∠BAD=∠BAC-∠CAD=45-30=15°,
∵△ACD≌△BCE,
∴∠CBE=30°,
∴∠ABF=45+30=75°,
∴∠AFB=180-15-75=90°,
∴AD⊥BE.
④证明:如图,
过D作DM⊥AC于M,过D作DN⊥BC于N.
∵∠CAD=30°,且DM=AC,
∵AC=AD,∠CAD=30°,∴∠ACD=75°,
∴∠NCD=90°-∠ACD=15°,∠MDC=∠DMC-∠ACD=15°,
∴△CMD≌△CND,
∴CN=CM=AC=BC,
∴CN=BN.
∵DN⊥BC,
∴BD=CD.∴④正确.
所以4个结论都正确.
故选D.
点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网