题目内容
【题目】如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30°,BD是⊙O的直径,如果CD=
,则AD= . ![]()
【答案】4
【解析】解:∵AB=AC, ∴∠ABC=∠ACB=∠ADB=30°,
∵BD是直径,
∴∠BAD=90°,∠ABD=60°,
∴∠CBD=∠ABD﹣∠ABC=30°,
∴∠ABC=∠CBD,
∴
=
=
,
∴
=
,
∴AD=CB,
∵∠BCD=90°,
∴BC=CDtan60°=
=4,
∴AD=BC=4.
所以答案是4.![]()
【考点精析】利用等腰三角形的性质和含30度角的直角三角形对题目进行判断即可得到答案,需要熟知等腰三角形的两个底角相等(简称:等边对等角);在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
练习册系列答案
相关题目
【题目】小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
月均用水量/t | 频数 | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | ||
5≤x<6 | 10 | 20% |
6≤x<7 | 12% | |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(2)如果家庭月均用水量“大于或等于4 t且小于7 t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户.