题目内容


如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.

(1)求证:四边形DBFE是平行四边形;

(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?

 


(1)证明:∵D、E分别是AB、AC的中点,

∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;

(2)解:当AB=BC时,四边形DBEF是菱形.

理由如下:∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,

∴DE=BC,∵AB=BC,∴BD=DE,又∵四边形DBFE是平行四边形,∴四边形DBFE是菱形.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网