题目内容
完成下面的证明:已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD
求证:∠EGF=90°
证明:∵HG∥AB(已知)
∴∠1=∠3________
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+________=180°________
又∵EG平分∠BEF(已知)
∴∠1=
∠________
又∵FG平分∠EFD(已知)
∴∠2=
∠________
∴∠1+∠2=
(________)
∴∠1+∠2=90°
∴∠3+∠4=90°________即∠EGF=90°.
两直线平行、内错角相等 ∠EFD 两直线平行、同旁内角互补 ∠BEF ∠EFD ∠BEF+∠EFD 等量代换
分析:此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,FG平分∠EFD得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.
解答:∵HG∥AB(已知)
∴∠1=∠3 (两直线平行、内错角相等)
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+∠EFD=180°(两直线平行、同旁内角互补)
又∵EG平分∠BEF,FG平分∠EFD
∴∠1=
∠BEF,
∠2=
∠EFD,
∴∠1+∠2=
(∠BEF+∠EFD),
∴∠1+∠2=90°
∴∠3+∠4=90° (等量代换),
即∠EGF=90°.
故答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.
点评:此题考查的知识点是平行的性质,关键是运用好平行线的性质及角平分线的性质.
分析:此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,FG平分∠EFD得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.
解答:∵HG∥AB(已知)
∴∠1=∠3 (两直线平行、内错角相等)
又∵HG∥CD(已知)
∴∠2=∠4
∵AB∥CD(已知)
∴∠BEF+∠EFD=180°(两直线平行、同旁内角互补)
又∵EG平分∠BEF,FG平分∠EFD
∴∠1=
∠2=
∴∠1+∠2=
∴∠1+∠2=90°
∴∠3+∠4=90° (等量代换),
即∠EGF=90°.
故答案分别为:两直线平行、内错角相等,∠EFD,两直线平行、同旁内角互补,∠BEF,∠EFD,∠BEF+∠EFD,等量代换.
点评:此题考查的知识点是平行的性质,关键是运用好平行线的性质及角平分线的性质.
练习册系列答案
相关题目